

GNU Privacy Guard

Protect your mail from eavesdroppers
and worse

Why email?

● Email is interoperable (Gmail users can talk to
Yahoo users, etc.)

● Email has wide adoption
● Email does not depend on one company or

government
● Email is extensible

A brief history of email

● 1960s: methods exist for message passing between users on the
same system (e.g., MIT's CTSS)

● 1971: Ray Tomlinson creates the first mail transfer agent and sends
the first email message to a user on another system with the
user@host notation

● 1979: Eric Allman creates delivermail, allowing mail to be routed
between different networks such as ARPANET and BerkNet

● 1980s: email begins to be adopted by the consumer market through
walled-garden (i.e., non-Internet) networks such as Prodigy

● 1990s: most email is now transferred over the Internet

mailto:user@host

Email vulnerabilities:
sender authentication

Email vulnerabilities:
interception/seizure

Any non-end-to-end encryption is subject to
subversion at the provider level:

2013: FBI receives warrant requiring Levison to turn over
SSL keys protecting Lavabit's 300,000 clients

Google reports 32,000 government requests for
confidential data in the first half of 2014; complies with
65%

Email stored on server for 180 days subject to warrantless
(subpoena-based) US government requests per 1986 Stored
Communications Act

Provider-based security

● Most providers use STARTTLS and HTTPS-enabled
webmail to provide transport encryption. This
protects traffic to and from the mail server.

● Your provider has full access to your mail
● This exposes you to privacy risks and your provider

to legal liability

Why TLS is insufficient

Transport Layer Security defeated.
Use End-to-End encryption!

Symmetric cryptography

● A shared secret (e.g., password) allows "symmetric"
ciphers (AES, IDEA, DES)

● Only way to provide "perfect" security
● Sharing a secret requires a secure channel

Asymmetric cryptography
● Asymmetric cryptography uses a keypair consisting

of "private" and "public" keys
● Each key decrypts messages encrypted by the other
● Computationally expensive: requires very large keys
● Messages are signed by "encrypting" with the

private key

Hybrid cryptography: PGP

● Public-key encryption establishes shared secret
● Message is symmetrically encrypted with that secret
● Message hashes are signed rather than the messages

themselves
● Minimizes computational cost while retaining

convenience of public-key cryptography

Encrypting a message

Signing a message

Mathematics of RSA

● Security based on the difficulty of factorization
● Public key is two numbers: an exponent and a

modulus (e, n)
● Private key is one number (d)
● A plaintext chunk p is a number to be converted into

a corresponding ciphertext c

Mathematics of RSA: simplified
example

RSA: risks and pitfalls

● Failure to verify key ownership
● Key compromise
● Endpoint compromise
● Metadata exposure to keyservers

Installing GnuPG

● Linux users, check your repo for gpg2
● Mac users should use GPGTools

– https://gpgtools.org

● Windows users should use Gpg4win
– http://www.gpg4win.org

https://gpgtools.org/
http://www.gpg4win.org/

Don't forget those checksums!

● ae694b45a91b1091625beefbd230dad953b31376
gpg4win-2.2.2.exe (SHA1)

● ac7a636bfee1027d8f43a12a82eea54e7566dcb8
GPG Suite - 2013.10.22.dmg (SHA1)

Key generation

gpg --gen-key

● 2048 or 4096 bits
● Expiration date
● Name
● Email
● Comment
● Passphrase

Thunderbird supports GPG
(with a little help)

KMail supports GPG

Mutt supports GPG

Claws supports GPG

Evolution supports GPG

GPG in webmail
we're not quite there yet!

GPG in webmail

Google End-to-End

● End-to-End can only generate P-256, P-384, and P-521 elliptic
curves believed by Bruce Schneier to be insecure.

● If you use End-to-End, you should import your own key.

Off-the-Record Messaging

● OTR protocol allows:
– Encryption

– Authentication

– Deniability

– Perfect forward secrecy

● Recommended clients include
– Adium (OS X)

– pidgin-otr (Linux/BSD/Windows)

